Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioengineering (Basel) ; 10(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627821

RESUMO

The valorization of fruit and vegetable residues (such as carrot discard) and their microbial conversion into 2,3-butanediol (BDO) can be considered as a very interesting way to reduce food waste and sustainably originate high value-added products. This work analyzes the valorization of carrot discard as feedstock for 2,3-butanediol (BDO) production by Paenibacillus polymyxa DSM 365. The influences of stirring and the presence of tryptone (nitrogen source) are studied. Furthermore, in order to evaluate the influence of the pre-culture medium (nitrogen source, nutrients, and pH) and the substrate, fermentation assays in simple and mixture semi-defined media (glucose, fructose, and/or galactose) were also carried out. As a result, 18.8 g/L BDO, with a BDO yield of 0.43 g/g (86% of its theoretical value), could be obtained from carrot discard enzymatic hydrolysate at 100 rpm, no tryptone, and pre-culture Häßler medium. No hydrothermal pre-treatment was necessary for BDO production from carrot discard, which increases the profitability of the process. Therefore, 18.8 g BDO, as well as 2.5 g ethanol and 2.1 g acetoin by-products, could be obtained from 100 g of carrot discard (dry matter).

2.
Front Plant Sci ; 14: 1155441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636100

RESUMO

Circum-Mediterranean firs are considered among the most drought-sensitive species to climate change. Understanding the genetic basis of trees' adaptive capacity and intra-specific variability to drought avoidance is mandatory to define conservation measures, thus potentially preventing their extinction. We focus here on Abies pinsapo and Abies marocana, both relict tree species, endemic from south Spain and north Morocco, respectively. A total of 607 samples were collected from eight nuclei: six from Spanish fir and two from Moroccan fir. A genotyping by sequencing technique called double digestion restriction site-associated DNA sequencing (ddRAD-seq) was performed to obtain a genetic matrix based on single-nucleotide polymorphisms (SNPs). This matrix was utilized to study the genetic structure of A. pinsapo populations and to carry out selection signature studies. In order to understand how Spanish fir and Moroccan fir cope with climate change, genotype-environment associations (GEAs) were identified. Further, the vulnerability of these species to climate variations was estimated by the risk of non-adaptedness (RONA). The filtering of the de novo assembly of A. pinsapo provided 3,982 SNPs from 504 out of 509 trees sequenced. Principal component analysis (PCA) genetically separated Grazalema from the rest of the Spanish populations. However, FST values showed significant differences among the sampling points. We found 51 loci potentially under selection. Homolog sequences were found for some proteins related to abiotic stress response, such as dehydration-responsive element binding transcription factor, regulation of abscisic acid signaling, and methylation pathway. A total of 15 associations with 11 different loci were observed in the GEA studies, with the maximum temperature of the warmest month being the variable with the highest number of associated loci. This temperature sensitivity was also supported by the risk of non-adaptedness, which yielded a higher risk for both A. pinsapo and A. marocana under the high emission scenario (Representative Concentration Pathway (RCP) 8.5). This study sheds light on the response to climate change of these two endemic species.

3.
Plants (Basel) ; 12(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514222

RESUMO

Ongoing climatic change is threatening the survival of drought-sensitive tree species, such as silver fir (Abies alba). Drought-induced dieback had been previously explored in this conifer, although the role played by tree-level genetic diversity and its relationship with growth patterns and soil microsite conditions remained elusive. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to describe different genetic characteristics of five silver fir forests in the Spanish Pyrenees, including declining and non-declining trees. Single nucleotide polymorphisms (SNPs) were used to investigate the relationships between genetics, dieback, intraspecific trait variation (functional dendrophenotypic traits and leaf traits), local bioclimatic conditions, and rhizosphere soil properties. While there were no noticeable genetic differences between declining and non-declining trees, genome-environment associations with selection signatures were abundant, suggesting a strong influence of climate, soil physicochemical properties, and soil microbial diversity on local adaptation. These results provide novel insights into how genetics and diverse environmental factors are interrelated and highlight the need to incorporate genetic data into silver fir forest dieback studies to gain a better understanding of local adaptation.

4.
Front Plant Sci ; 14: 1116863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152146

RESUMO

Introduction: Understanding the adaptive capacity to current climate change of drought-sensitive tree species is mandatory, given their limited prospect of migration and adaptation as long-lived, sessile organisms. Knowledge about the molecular and eco-physiological mechanisms that control drought resilience is thus key, since water shortage appears as one of the main abiotic factors threatening forests ecosystems. However, our current background is scarce, especially in conifers, due to their huge and complex genomes. Methods: Here we investigated the eco-physiological and transcriptomic basis of drought response of the climate change-threatened conifer Cedrus atlantica. We studied C. atlantica seedlings from two locations with contrasting drought conditions to investigate a local adaptation. Seedlings were subjected to experimental drought conditions, and were monitored at immediate (24 hours) and extended (20 days) times. In addition, post-drought recovery was investigated, depicting two contrasting responses in both locations (drought resilient and non-resilient). Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of drought resilience and investigate a rapid local adaptation of C. atlantica. Results: De novo transcriptome assembly was performed for the first time in this species, providing differences in gene expression between the immediate and extended treatments, as well as among the post-drought recovery phenotypes. Weighted gene co-expression network analysis showed a regulation of stomatal closing and photosynthetic activity during the immediate drought, consistent with an isohydric dynamic. During the extended drought, growth and flavonoid biosynthesis inhibition mechanisms prevailed, probably to increase root-to-shoot ratio and to limit the energy-intensive biosynthesis of secondary metabolites. Drought sensitive individuals failed in metabolism and photosynthesis regulation under drought stress, and in limiting secondary metabolite production. Moreover, genomic differences (SNPs) were found between drought resilient and sensitive seedlings, and between the two studied locations, which were mostly related to transposable elements. Discussion: This work provides novel insights into the transcriptomic basis of drought response of C. atlantica, a set of candidate genes mechanistically involved in its drought sensitivity and evidence of a rapid local adaptation. Our results may help guide conservation programs for this threatened conifer, contribute to advance drought-resilience research and shed light on trees' adaptive potential to current climate change.

5.
Tree Physiol ; 43(2): 315-334, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36210755

RESUMO

Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.


Assuntos
Abies , Abies/fisiologia , Transcriptoma , Secas , Epigênese Genética , Florestas , Árvores/genética , Genômica
6.
Sci Total Environ ; 858(Pt 2): 159778, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309267

RESUMO

Local differentiation at distribution limits may influence species' adaptive capacity to environmental changes. However, drivers, such gene flow and local selection, are still poorly understood. We focus on the role played by range limits in mountain forests to test the hypothesis that relict tree populations are subjected to genetic differentiation and local adaptation. Two alpine treelines of mountain pine (Pinus uncinata Ram. ex DC) were investigated in the Spanish Pyrenees. Further, an isolated relict population forming the species' southernmost distribution limit in north-eastern Spain was also investigated. Using genotyping by sequencing, a genetic matrix conformed by single nucleotide polymorphisms (SNPs) was obtained. This matrix was used to perform genotype-environment and genotype-phenotype associations, as well as to model risk of non-adaptedness. Increasing climate seasonality appears as an essential element in the interpretation of SNPs subjected to selective pressures. Genetic differentiations were overall weak. The differences in leaf mass area and radial growth rate, as well as the identification of several SNPs subjected to selective pressures, exceeded neutral predictions of differentiation among populations. Despite genetic drift might prevail in the isolated population, the Fst values (0.060 and 0.066) showed a moderate genetic drift and Nm values (3.939 and 3.555) indicate the presence of gene flow between the relict population and both treelines. Nonetheless, the SNPs subjected to selection pressures provide evidences of possible selection in treeline ecotones. Persistence in range boundaries seems to involve several selective pressures in species' traits, which were significantly related to enhanced drought seasonality at the limit of P. uncinata distribution range. We conclude that gene flow is unlikely to constrain adaptation in the P. uncinata rear edge, although this species shows vulnerability to future climate change scenarios involving warmer and drier conditions.


Assuntos
Pinus , Espanha , Pinus/genética , Árvores , Florestas , Mudança Climática , Deriva Genética
7.
Glob Chang Biol ; 28(14): 4439-4458, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35320604

RESUMO

Rear-edge populations at the xeric distribution limit of tree species are particularly vulnerable to forest dieback triggered by drought. This is the case of silver fir (Abies alba) forests located in Southwestern Europe. While silver fir drought-induced dieback patterns have been previously explored, information on the role played by nutritional impairment is lacking despite its potential interactions with tree carbon-water balances. We performed a comparative analysis of radial growth, intrinsic water-use efficiency (iWUE), oxygen isotopes (δ18 O) and nutrient concentrations in leaves of declining (DD) and non-declining (ND) trees in silver fir in four forests in the Spanish Pyrenees. We also evaluated the relationships among dieback predisposition, intraspecific trait variation (wood density and leaf traits) and rhizosphere soil physical-chemical properties. The onset of growth decline in DD trees occurred more than two decades ago, and they subsequently showed low growth resilience against droughts. The DD trees presented consistently lower foliar concentrations of nutrients such as P, K, Cu and Ni than ND trees. The strong effects of foliar nutrient status on growth resilience indices support the key role played by mineral nutrition in tree functioning and growth before, during and after drought. In contrast, variability in wood density and leaf morphological traits, as well as soil properties, showed weak relationships with tree nutritional status and drought performance. At the low elevation, warmer sites, DD trees showed stronger climate-growth relationships and lower δ18 O than ND trees. The uncoupling between iWUE and δ18 O, together with the positive correlations between P and K leaf concentrations and δ18 O, point to deeper soil/bedrock water sources and vertical decoupling between nutrient and water uptake in DD trees. This study provides novel insights into the mechanisms driving silver fir dieback and highlights the need to incorporate tree nutrition into forest dieback studies.


Las poblaciones del límite xérico de distribución de las especies de árboles son particularmente vulnerables al decaimiento forestal inducido por sequía. Este es el caso de los bosques de abeto (Abies alba) situados en el suroeste de Europa. Si bien los patrones de decaimiento provocado por sequía del abeto se han explorado previamente, falta información sobre el papel que desempeña el deterioro nutricional a pesar de sus interacciones potenciales con los balances de agua y carbono de los árboles. En este estudio, hemos realizado un análisis comparativo del crecimiento radial, la eficiencia intrínseca del uso del agua (iWUE), los isótopos de oxígeno (δ18O) y las concentraciones de nutrientes en hojas de árboles decaídos (DD) y no decaídos (ND) en cuatro abetares de los Pirineos españoles. También evaluamos las relaciones entre la predisposición al decaimiento, la variación de rasgos intraespecíficos (densidad de la madera y rasgos de las hojas) y las propiedades físico-químicas de la rizosfera. El inicio de la disminución del crecimiento en los árboles DD ocurrió hace más de dos décadas y posteriormente mostraron una baja resiliencia de crecimiento frente a las sequías. Los árboles DD presentaron concentraciones foliares consistentemente más bajas de nutrientes como P, K, Cu y Ni que los árboles ND. Los fuertes efectos del estado de los nutrientes foliares en los índices de resiliencia del crecimiento respaldan el papel clave que desempeña la nutrición mineral en el funcionamiento y el crecimiento de los árboles antes, durante y después de la sequía. En contraste, la variabilidad en la densidad de la madera y los rasgos morfológicos de las hojas, así como las propiedades del suelo, mostraron una relación débil con el estado nutricional de los árboles y la respuesta del crecimiento a la sequía. En los sitios más cálidos y de baja elevación, los árboles DD mostraron relaciones clima-crecimiento más fuertes y un δ18 O más bajo que los árboles ND. El desacoplamiento entre iWUE y δ18 O, junto con las correlaciones positivas entre las concentraciones foliares de P y K y δ18 O, apuntan a fuentes de agua más profundas del suelo/lecho rocoso y un desacoplamiento vertical entre la absorción de nutrientes y agua en los árboles DD. Este estudio proporciona información novedosa sobre los mecanismos que impulsan el decaimiento del abeto y destaca la necesidad de incorporar la nutrición de los árboles en los estudios de muerte regresiva del bosque.


Assuntos
Carbono , Secas , Florestas , Solo , Árvores , Água
8.
Front Plant Sci ; 13: 991720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618643

RESUMO

Acute and early symptoms of forest dieback linked to climate warming and drought episodes have been reported for relict Abies pinsapo Boiss. fir forests from Southern Spain, particularly at their lower ecotone. Satellite, orthoimages, and field data were used to assess forest decline, tree mortality, and gap formation and recolonization in the lower half of the altitudinal range of A. pinsapo forests (850-1550 m) for the last 36 years (1985-2020). Field surveys were carried out in 2003 and in 2020 to characterize changes in stand canopy structure and mortality rates across the altitudinal range. Time series of the Normalized Difference Vegetation Index (NDVI) at the end of the dry season (derived from Landsat 5 and 7 imagery) were used for a Dynamic Factor Analysis to detect common trends across altitudinal bands and topographic solar incidence gradients (SI). Historical canopy cover changes were analyzed through aerial orthoimages classification. Here we show that extensive decline and mortality contrast to the almost steady alive basal area for 17 years, as well as the rising photosynthetic activity derived from NDVI since the mid-2000s and an increase in the forest canopy cover in the late years at mid and high altitudes. We hypothesized that these results suggest an unexpected resilience in A. pinsapo forests to climate change-induced dieback, that might be promoted by compensation mechanisms such as (i) recruitment of new A. pinsapo individuals; (ii) facilitative effects on such recruitment mediated by revegetation with other species; and (iii) a 'release effect' in which surviving trees can thrive with fewer resource competition. Future research is needed to understand these compensation mechanisms and their scope in future climate change scenarios.

9.
Sci Total Environ ; 796: 148930, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34378542

RESUMO

Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.


Assuntos
Pinus , Traqueófitas , Mudança Climática , Secas , Florestas , Temperatura , Árvores
10.
Bioresour Technol ; 329: 124929, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706176

RESUMO

Sugarcane straw (SCS) was pretreated with dilute sulfuric acid assisted by microwave to magnify fermentable sugars and to minimize the concentration of inhibitors in the hydrolysates. The optimum conditions for maximum recovery of sugars were 162 °C and 0.6% (w/v) H2SO4. The low level of inhibitors, such as acetate (2.9 g/L) and total phenolics (1.4 g/L), in the SCS slurry from the pretreatment stage allowed the enzymatic hydrolysis and fermentation steps to occur without detoxification. Besides consuming the total sugar content (31.0 g/L), Clostridium beijerinckii Br21 was able to use acetate from the SCS hydrolysate, to give butyric acid at high conversion factor (0.49 g of butyric acid /g of sugar). The optimized pretreatment conditions spared acid, time, and the detoxification stage, making bio-butyric acid production from SCS extremely attractive.


Assuntos
Clostridium beijerinckii , Saccharum , Ácido Butírico , Fermentação , Hidrólise , Micro-Ondas
11.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508887

RESUMO

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Assuntos
Ecossistema , Árvores , Mudança Climática , Temperatura Baixa , Temperatura
12.
Front Plant Sci ; 12: 797958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058957

RESUMO

Forest tree species are highly vulnerable to the effects of climate change. As sessile organisms with long generation times, their adaptation to a local changing environment may rely on epigenetic modifications when allele frequencies are not able to shift fast enough. However, the current lack of knowledge on this field is remarkable, due to many challenges that researchers face when studying this issue. Huge genome sizes, absence of reference genomes and annotation, and having to analyze huge amounts of data are among these difficulties, which limit the current ability to understand how climate change drives tree species epigenetic modifications. In spite of this challenging framework, some insights on the relationships among climate change-induced stress and epigenomics are coming. Advances in DNA sequencing technologies and an increasing number of studies dealing with this topic must boost our knowledge on tree adaptive capacity to changing environmental conditions. Here, we discuss challenges and perspectives in the epigenetics of climate change-induced forests decline, aiming to provide a general overview of the state of the art.

13.
Rev. biol. trop ; 67(6)dic. 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1507586

RESUMO

Introduction: The Apolinar's Wren Cisthotorus apolinari is an endemic species of the Eastern Andes of Colombia currently classified as Critically Endangered (CR) at the national level and Endangered (EN) worldwide, mainly due to the degradation of wetlands, their primary habitat, and the parasitism of the nests. Objetive: Evaluate the state of the populations of C. apolinari in seven wetlands of the Sabana de Bogotá, searching to define what the areas evaluated mean that it hosts the largest population of the species and what other factors determine these population sizes. Methods Between July and December 2014 in seven wetlands we monitoring carried out using counting points and auditory censuses, the abundance of the Apolinar's Wren was recorded, the vegetation cover where the individuals were recorded and the abundances of Shiny Cowbird Molothrus bonariensis. Results: There were 63.6 h of observation and 88 counting points, obtain a nine records of C. apolinari , one individual in Tibanica, three in La Florida and five in Gualí, mainly associated with the reed Schoenoplectus californicus. None of the biotic and abiotic factors evaluated in the wetlands, were found to determine the presence of the Apolinar's Wren, but trends were present for some variables as the presence of S. californicus and Thypa spp. Conclusions: The population of C. apolinari has had a significant reduction of up to 94 %, added to a possible local extinction in the wetland of La Conejera. These results seek to provide relevant information to contribute to the formulation of effective conservation measures for the protection of the species and its habitat throughout its distribution in the country.

14.
Sci Total Environ ; 697: 133989, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31484092

RESUMO

The effects of climate change on forest growth are not homogeneous across tree species distribution ranges because of inter-population variability and spatial heterogeneity. Although latitudinal and thermal gradients in growth patterns have been widely investigated, changes in these patterns along longitudinal gradients due to the different timing and severity of regional droughts are less studied. Here, we investigated these responses in Mediterranean Black pine (Pinus nigra Arn.). We built a tree-ring width dataset comprising 77 forests (1202 trees) across the Mediterranean Basin. The biogeographical patterns in growth patterns and the relationships between growth and mean temperature, precipitation, drought and atmospheric circulations patterns (NAO -North Atlantic Oscillation-, SOI -Southern Oscillation Index- and MOI -Mediterranean Oscillation index-) were analyzed. Then, we evaluated the spatial and temporal growth synchrony between and within east and west populations. We found different growth and climate patterns in west vs. east Black pine populations, although in both regions growth was driven by similar temperature and precipitation variables. MOI significantly influenced tree growth, whilst NAO and SOI showed weaker effects. Growth of east and west Black pine populations desynchronized after the 1970s when several and uncoupled regional droughts occurred across the Mediterranean Basin. We detected a climate shift from the 1970s to the 1980s affecting growth patterns, changing growth-climate relationships, and reducing forest growth from west to east Black pine forests. Afterwards, climate and growth of east and west populations became increasingly more divergent. Our findings imply that integral bioclimatic and biogeographical analyses across the species distribution area must be considered to adequately assess the impact of climate change on tree growth under warming and more arid conditions.


Assuntos
Mudança Climática , Secas , Pinus/fisiologia , Fenômenos Biológicos , Florestas , Região do Mediterrâneo
15.
Bioresour Technol ; 247: 736-743, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30060408

RESUMO

This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose into xylitol was compared. Additionally, different strategies were evaluated for the hydrolysate detoxification before its use as a fermentation medium. Assays in semi-defined media were also performed to verify the influence of hexose sugars on xylose metabolism by the yeasts. C. guilliermondii exhibited higher tolerance to toxic compounds than D. hansenii. Not only the toxic compounds present in the hydrolysate affected the yeast's performance, but glucose also had a negative impact on their performance. It was not necessary to completely eliminate the toxic compounds to obtain an efficient conversion of xylose into xylitol, mainly by C. guilliermondii (YP/S=0.55g/g and 0.45g/g for C. guilliermondii and D. hansenii, respectively).


Assuntos
Brassica rapa , Candida , Xilitol , Fermentação , Polissacarídeos , Xilose
16.
Sci Total Environ ; 645: 533-542, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029129

RESUMO

A large amount of olive-derived biomass is generated yearly in Spain, which could be used as a potential source of bioactive compounds. The present work evaluates the recovery of natural antioxidants from olive tree pruning (OTP) and olive mill leaves (OML). For this purpose, the effect of different solvents on the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity was evaluated. The solvent was found to have a significant effect (p < 0.05) on the TPC, TFC, and the DPPH, ABTS, and FRAP activity, affording similar results for the extracts from the two by-products. The extracts obtained using 50% ethanol showed high TPC (23.85 and 27.54 mg GAE/gdw for OTP and OML, respectively) and TFC (52.82 and 52.39 mg RE/gdw for OTP and OML, respectively). Also, the OTP and OML extracts exhibited notable antioxidant activity as measured by the ABTS method (45.96 and 42.71 mg TE/gdw, respectively). Using pyrolysis-gas chromatography/mass spectrometry, 30 bioactive compounds were detected in both extracts. Additionally, UPLC-DAD-ESI-MS allowed the identification of 15 compounds in the samples. Furthermore, the antioxidant extracts were found to inhibit the growth of several food pathogenic bacteria. This research demonstrates that these by-products from olive grove farming are a good source of antioxidant compounds with antibacterial properties, which have potential applications in the food and pharmaceutical industries.


Assuntos
Resíduos Industriais , Olea , Compostos Fitoquímicos/análise , Extratos Vegetais , Antioxidantes , Flavonoides , Fenóis , Espanha
17.
Front Plant Sci ; 9: 1964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713543

RESUMO

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

18.
Biomed Res Int ; 2017: 9727581, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250553

RESUMO

Olive tree pruning, as one of the most abundant lignocellulosic residues in Mediterranean countries, has been evaluated as a source of sugars for fuel and chemicals production. A mild acid pretreatment has been combined with a fungal pretreatment using either two endophytes (Ulocladium sp. and Hormonema sp.) or a saprophyte (Trametes sp. I-62). The use of endophytes is based on the important role that some of them play during the initial stages of wood decomposition. Without acid treatment, fungal pretreatment with Ulocladium sp. provided a nonsignificant enhancement of 4.6% in glucose digestibility, compared to control. When a mild acid hydrolysis was carried out after fungal pretreatments, significant increases in glucose digestibility from 4.9% to 12.0% (compared to control without fungi) were observed for all fungal pretreatments, with maximum values yielded by Hormonema sp. However, despite the observed digestibility boost, the total sugar yields (taking into account solid yield) were not significantly increased by the pretreatments. Nevertheless, based on these preliminary improvements in digestibility, this work proves the potential of endophytic fungi to boost the production of sugar from olive tree pruning, which would add an extra value to the bioeconomy of olive crops.


Assuntos
Ascomicetos/metabolismo , Endófitos/metabolismo , Madeira/metabolismo , Biocombustíveis , Biomassa , Biotecnologia , Hidrólise , Olea/química , Madeira/química
19.
Bioresour Technol ; 239: 326-335, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28531858

RESUMO

Olive tree biomass (OTB) can be used for producing second generation bioethanol. In this work, extracted OTB was subjected to fractionation using a sequential acid/alkaline oxidative pretreatment. In the first acid stage, the effects of sulfuric acid concentration and reaction times at 130°C were investigated. Up to 71% solubilization of hemicellulosic sugars was achieved under optimized conditions (2.4% H2SO4, 84min). In the second stage, the influence of hydrogen peroxide concentration and process time were evaluated at 80°C. Approximately 80% delignification was achieved under the best operational conditions (7% H2O2, 90min) within the experimental range studied. This pretreatment produced a substrate with 72% cellulose that was highly accessible to enzymatic attack, yielding 82g glucose/100g glucose in delignified OTB. Ethanol production from both hemicellulosic sugars solubilized in the acid pretreatment and glucose from enzymatic hydrolysis of delignified OTB yielded 15g ethanol/100g OTB.


Assuntos
Etanol , Peróxido de Hidrogênio , Olea , Biocombustíveis , Biomassa , Fermentação , Hidrólise , Peróxidos
20.
Glob Chang Biol ; 23(7): 2705-2719, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27782362

RESUMO

Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Clima , Secas , Modelos Teóricos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA